SSM6K08FU

High Speed Switching Applications

Unit: mm

- Small package
- Low on resistance: $R_{\text {on }}=105 \mathrm{~m} \Omega(\max)\left(@ \mathrm{VGS}_{\mathrm{GS}}=4 \mathrm{~V}\right)$

$$
\mathrm{R}_{\mathrm{on}}=140 \mathrm{~m} \Omega(\max)(@ \mathrm{VGS}=2.5 \mathrm{~V})
$$

- High-speed switching: $\mathrm{t}_{\mathrm{on}}=16 \mathrm{~ns}$ (typ.)

$$
\mathrm{t}_{\mathrm{off}}=15 \mathrm{~ns} \text { (typ.) }
$$

Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit	
Drain-Source voltage	V_{DS}	20	V	
Gate-Source voltage	$\mathrm{V}_{\mathrm{GSS}}$	± 12	V	
Drain current	DC	I_{D}	1.6	A
	Pulse	I_{DP}	3.2	
Drain power dissipation	P_{D} $(\mathrm{Note} 1)$	300	mW	
Channel temperature	T_{Ch}	150		
Storage temperature range	$\mathrm{T}_{\mathrm{stg}}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$	

Note1: Mounted on FR4 board.
$\left(25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm} \times 1.6 \mathrm{t}, \mathrm{Cu}\right.$ Pad: $\left.0.32 \mathrm{~mm}^{2} \times 6\right) \quad$ Figure 1.

Weight: 6.8 mg (typ.)

Marking
Circuit (top view)

Equivalent

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

SSM6K08FU

Electrical Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Condition	Min	Typ.	Max	Unit	
Gate leakage current		IGSS	$\mathrm{V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	-	± 1	$\mu \mathrm{A}$	
Drain-Source breakdown voltage		V (BR) DSS	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	20	-	-	V	
		V (BR) DSX	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$	12	-	-		
Drain cut-off current		IDSS	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	-	1	$\mu \mathrm{A}$	
Gate threshold voltage		$V_{\text {th }}$	$\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$	0.5	-	1.2	V	
Forward transfer admittance		$\left\|\mathrm{Y}_{\text {fs }}\right\|$	$\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.8 \mathrm{~A} \quad$ (Note2)	2.0	-	-	S	
Drain-Source ON resistance		RDS (ON)	$\mathrm{ID}=0.8 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4 \mathrm{~V} \quad$ (Note2)	-	77	105	$m \Omega$	
		$\mathrm{I}_{\mathrm{D}}=0.8 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V} \quad$ (Note2)	-	100	140			
		$\mathrm{I}_{\mathrm{D}}=0.8 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=2.0 \mathrm{~V} \quad$ (Note2)	-	125	210			
Input capacitance			Ciss	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	306	-	pF
Reverse transfer capacitance			$\mathrm{C}_{\text {rss }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	44	-	pF
Output capacitance		$\mathrm{C}_{\text {oss }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	74	-	pF	
Switching time	Turn-on time	$\mathrm{t}_{\text {on }}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.8 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}}=0 \sim 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=4.7 \Omega \end{array}\right.$	-	16	-	ns	
	Turn-off time	$\mathrm{t}_{\text {off }}$		-	15	-		

Note2: Pulse test

Switching Time Test Circuit

(a) Test Circuit
(b) V_{IN}

Precaution

$V_{\text {th }}$ can be expressed as voltage between gate and source when low operating current value is $I_{D}=100 \mu \mathrm{~A}$ for this product. For normal switching operation, VGS (on) requires higher voltage than $V_{t h}$ and $V_{G S}$ (off) requires lower voltage than Vth.
(Relationship can be established as follows: V_{GS} (off) $<\mathrm{V}_{\text {th }}<\mathrm{V}_{\mathrm{GS}}$ (on))
Please take this into consideration for using the device. VGS recommended voltage of 2.5 V or higher to turn on this product.

