Unit: mm

SSM6K08FU

High Speed Switching Applications

• Small package

• Low on resistance: $R_{on} = 105 \text{ m}\Omega \text{ (max) (@V_{GS} = 4 V)}$

 $R_{on} = 140 \text{ m}\Omega \text{ (max) (@VGS} = 2.5 \text{ V)}$

• High-speed switching: $t_{on} = 16 \text{ ns (typ.)}$

 $t_{off} = 15 \text{ ns (typ.)}$

Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V_{DS}	20	V	
Gate-Source voltage		V_{GSS}	±12	V	
Drain current	DC	I _D	1.6	Α	
	Pulse	I_{DP}	3.2		
Drain power dissipation		P _D (Note1)	300	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	−55~150	°C	

Note1: Mounted on FR4 board.

 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu Pad: } 0.32 \text{ mm}^2 \times 6)$ Figure 1.

Weight: 6.8 mg (typ.)

Marking Circuit (top view)

Equivalent

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

SSM6K08FU

Electrical Characteristics (Ta = 25°C)

Chara	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit	
Gate leakage curr	rent	I _{GSS}	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$	_	_	±1	μА	
Drain-Source breakdown voltage	V (BR) DSS	$I_D = 1 \text{ mA}, V_{GS} = 0$	20	_	_	V		
	V (BR) DSX	$I_D = 1 \text{ mA}, V_{GS} = -12 \text{ V}$	12	_	_			
Drain cut-off curre	ent	I _{DSS}	$V_{DS} = 20 \text{ V}, V_{GS} = 0$	_	_	1	μА	
Gate threshold vo	ltage	V_{th}	$V_{DS} = 3 \text{ V}, I_D = 0.1 \text{ mA}$	0.5	_	1.2	V	
Forward transfer a	admittance	Y _{fs}	$V_{DS} = 3 \text{ V}, I_D = 0.8 \text{ A}$ (Note2)	2.0	_	_	S	
Drain-Source ON resistance		R _{DS} (ON)	$I_D = 0.8 \text{ A}, V_{GS} = 4 \text{ V}$ (Note2)	_	77	105	mΩ	
			$I_D = 0.8 \text{ A}, V_{GS} = 2.5 \text{ V}$ (Note2)	_	100	140		
			$I_D = 0.8 \text{ A}, V_{GS} = 2.0 \text{ V}$ (Note2)	_	125	210		
Input capacitance	:	C _{iss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	306	_	pF	
Reverse transfer	capacitance	C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$		44	_	pF	
Output capacitance		C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	74	_	pF	
Switching time	Turn-on time	t _{on}	$V_{DD} = 10 \text{ V}, I_D = 0.8 \text{ A},$	_	16	_	ns	
	Turn-off time	t _{off}	$V_{GS} = 0~2.5 \text{ V}, R_G = 4.7 \Omega$	_	15			

Note2: Pulse test

Switching Time Test Circuit

(b) V_{IN}

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = 100 μA for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(Relationship can be established as follows: $V_{GS \text{ (off)}} < V_{th} < V_{GS \text{ (on)}}$)

Please take this into consideration for using the device. V_{GS} recommended voltage of 2.5~V or higher to turn on this product.